H=-16t^2+110t+4

Simple and best practice solution for H=-16t^2+110t+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+110t+4 equation:



=-16H^2+110H+4
We move all terms to the left:
-(-16H^2+110H+4)=0
We get rid of parentheses
16H^2-110H-4=0
a = 16; b = -110; c = -4;
Δ = b2-4ac
Δ = -1102-4·16·(-4)
Δ = 12356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12356}=\sqrt{4*3089}=\sqrt{4}*\sqrt{3089}=2\sqrt{3089}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-110)-2\sqrt{3089}}{2*16}=\frac{110-2\sqrt{3089}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-110)+2\sqrt{3089}}{2*16}=\frac{110+2\sqrt{3089}}{32} $

See similar equations:

| 2.5+4x=10.5 | | 17.5/20=x/32 | | 2(1/2q+1)=-3(2q-)+4(2q+1) | | 7x+8x-1=3(5x+1) | | 42=w/2 | | 2/n+6=-14 | | 6x=4(x÷5) | | -243=-9(+x) | | -6(1+2a)=0 | | -57=6x-1 | | 42x^2+98x+56=0 | | 14-(2q÷5)=-2q÷9 | | 4x+9x=-11 | | 20+(2.50x)=15(3x) | | -6x=-504 | | 7(3x+2)=27x | | 3n/4+2=-1 | | 76+x=25 | | (5x-20)/5=5x-1) | | x/x-3=-6/x^2-8x+15 | | 12=w÷4-12 | | 11=m+19 | | -(2x-7)+7(7x-5)=-28 | | 16+13xx=5 | | -n/4+1=0 | | 1/5x=4=-1 | | 2/3x+1/3=1/3x+2/5 | | 3x+3/5=3/4 | | 4x+4/6=0 | | -8x+5(1-2x)=5 | | 2n/3-1=-1 | | X^3+22x^2+23x=0 |

Equations solver categories